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This paper proposes level set (LS) based robust topology optimization (RTO) method that can be used for electromagnetic (EM) 

design problem under uncertain loads (UL). For this purpose, a weighted summation of expected value and variance of EM energy is 

used for an objective function. Since traditional stochastic methods to solve this problem with continuous probabilistic density function 

(PDF) are computationally intractable, thus analytic approach is proposed for calculation of stochastic performance measure for 

normally distributed conditions. The problem for UL is equivalent to multiple load case and can be solved efficiently and accurately by 

a small set of auxiliary problems. The suggested method is implemented to c-core actuator problem considering uncertainty of coercive 

force (CF). 

 
Index Terms— Coercive force, Level set, Robustness, Topology optimization, Uncertainty 

 

I. INTRODUCTION 

OPOLOGY optimization allows one to obtain a conceptual 

design using a technique for optimal material distribution 

in a given design domain without depending on a priori 

knowledge. The importance of robust optimum design is 

widely recognized in the field of EM design considering the 

effects for uncertainties of design variables.  

The LS based TO has been applied to the optimal 

ferromagnetic distribution of c-core actuator system [1]-[2]. 

The minimum compliance problem having multiple loads is 

applied to calculate sensitivity and performance for UL 

problem [3]-[4]. The reliability based topology optimization 

(RBTO) for UL is introduced by Wang et al [5].  

In this paper, we present a LS based RTO (LSRTO) which 

consider analytic approach of combined expected value and 

variance of magnetic energy for uncertain CF. 

II. LSRTO UNDER LOADING UNCERTAINTY 

A. LSRTO Problem 

The LS method is a numerical technique using an implicit 

function for tracking interfaces and boundaries. The principle 

of LS based TO is to update the implicit function using a 

velocity function derived from the shape sensitivity, so that the 

design progresses iteratively toward an optimum. 

The structure is defined by an implicit function ( )x  so 

that its zero LS coincides with the boundary, 
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where D  is the design domain, x  stands for an arbitrary 

position in design one and D  is the boundary by zero LS. 

The Hamilton–Jacobi equation for updating the LS function 

that represents the material boundary changes is defined as 

 0nV V
t t

 
     

 
 (2) 

where V  and nV  are velocity vector and velocity function 

acting normal to interface. 

The purpose of the LSRTO problem is to find an optimal 

shape of design domain to maximize the robust objective 

function, RB  consisting of EM energy, EM  under UL 

subject to a volume constraint Volmax. The LSRTO is defined 

in a following form 
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where [0,1]   is a weighting factor for the two parts of the 

objective,  a  and  l  are the energy bilinear form and load 

linear one of magnetostatic field respectively, A  and A  are 

magnetic vector potential and virtual one, A  is the space of 

admissible virtual vector potential, V  is the volume,  H  is 

the Heaviside function and   is the design domain larger than 

D  which is a subset of   . 

B. Robust Objective using Expected and Variance of 

Magnetic Energy under UL 

The robust objective (3) is constructed as a weighted sum of 

expectation and variance of objective, which, in this case, is 

the EM energy. The square root of variance is applied to 

eliminate disparity of units between expected value and 

variance. 

The expected objective function [ ]EME  under UL is 

derived as follows 

      
1

1

1
n

n

EM EM i n
J J

i

E J J P J dJ dJ


        (6) 

where J  stands for applied load by the CF,  iP J  is the PDF 

for i th UL and n  is the number of UL. 

A discretized expression for EM energy can be written as 

T 
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where  J  is the CF loading vector for discretized form of 

(4),  K  is a symmetric magnetic stiffness matrix with order 

which is the number of degrees of freedom, subscript e  stands 

for element discretized form and O  is the objective domain. 

Assuming that the UL are uncorrelated and Gaussian 

distribution, the expected value of EM energy (6) can be 

derived analytically using integration by parts [4]. 

              
1 1

, ,

1

2
O

n
T T

EM i ie ee ee e
i

E J K J J K J   

 



 
   

 
   (8) 

where J  stands for the mean magnitude of UL, 
,iJ  is the 

standard deviation of one. The expected EM energy (8) is 

equivalent to the problem for 1 n  multiple deterministic 

loads can be solved analytically by a small set of auxiliary 

problems. The first load case is the simultaneous application 

of mean CF J  and the subsequent n  cases correspond to a 

single one equal to 
,iJ  applied at the location of a i th UL 

[3]-[4]. 

The variance of 
EM can be derived by evaluating the 

following 
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For a normal distribution of UL, (9) can be derived 

analytically using integration of normal PDF by parts and 

squaring expected value of EM energy (8). 
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where A and iA   stand for vector potentials for CF J  and 

,iJ  respectively and    is a diagonal matrix with standard 

deviation of CF. 

C. Shape Sensitivity for Normal Velocity of LS Method 

Using the design sensitivity analysis, the speed function nV  

which defines the propagation of all LS of the embedding 

function ( )x  along the normal direction of the implicit 

moving boundary can be calculated as 
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where (12) and (13) are the shape sensitivity for expected and 

variance of objective function and  are calculated using adjoint 

vector potential   and i  by adjoint variable method [1]-[2]-

[4]. The analytical formulations derived in (8), (10), (12) and 

(13) require 1 n  load cases to compute the objective 

functions and the required sensitivities. Therefore, the 

computational cost of the objective and sensitivities scale 

linearly with the number of loads with uncertainty [4]. 

III. NUMERICAL INVESTIGATION FOR C-CORE MAGNETIC 

ACTUATOR SYSTEM 

To validate optimization approach, a c-core actuator is 

suggested [1]-[2]. The optimization problem defined in (3)-(5) 

is applied to obtain the optimal topology of the yoke of the 

conventional c-core actuator system. The initial design of the 

actuator and the design domain where EM configuration will 

be generated is shown in Fig. 1. The amount of linear 

ferromagnetic material distribution is limited to 70% of the 

design domain. The air gap is specified as an objective domain 

where the magnetic energy is calculated. Since the energy 

variation is equal to the force, the magnetic energy can be 

defined to maximize the attraction force for the magnet to 

move the armature [1]. 

 

 
Fig. 1. C-core levitation configuration; (a) Initial design & material properties, 

(b) deterministic optimal design and (c) robust one (α = 0.75).  

 

Robust results for UL have smaller variance values 

compared to the deterministic topology optimization (DTO) 

solution and there appear to be a trade-off between expected 

one and variance of one and are shown in Table I. 

 
TABLE I 

COMPARISON AMONG DETERMINISTIC AND ROBUST OPTIMAL DESIGNS 

Design Solution 

Expected 

Magnetic 
Energy [J] 

Variance of 

Magnetic 
Energy [J] 

Volume 

[%] 

DTO 5.315×10-6 1.924×10-4 70.0 

LSRTO (α = 0.25) 4.998×10-6 1.631×10-4 70.1 

LSRTO (α = 0.50) 5.227×10-6 1.715×10-4 70.0 
LSRTO (α = 0.75) 5.743×10-6 1.845×10-4 70.0 
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